The mere mention of “quantum consciousness” makes most physicists cringe, as the phrase seems to evoke the vague, insipid musings of a New Age guru. But if a new hypothesis proves to be correct, quantum effects might indeed play some role in human cognition. Matthew Fisher, a physicist at the University of California, Santa Barbara, raised eyebrows late last year when he published a paper in Annals of Physics proposing that the nuclear spins of phosphorus atoms could serve as rudimentary “qubits” in the brain—which would essentially enable the brain to function like a quantum computer.
As recently as 10 years ago, Fisher’s hypothesis would have been dismissed by many as nonsense. Physicists have been burned by this sort of thing before, most notably in 1989, when Roger Penrose proposed that mysterious protein structures called “microtubules” played a role in human consciousness by exploiting quantum effects. Few researchers believe such a hypothesis plausible. Patricia Churchland, a neurophilosopher at the University of California, San Diego, memorably opined that one might as well invoke “pixie dust in the synapses” to explain human cognition.
Fisher’s hypothesis faces the same daunting obstacle that has plagued microtubules: a phenomenon called quantum decoherence. To build an operating quantum computer, you need to connect qubits—quantum bits of information—in a process called entanglement. But entangled qubits exist in a fragile state. They must be carefully shielded from any noise in the surrounding environment. Just one photon bumping into your qubit would be enough to make the entire system “decohere,” destroying the entanglement and wiping out the quantum properties of the system. It’s challenging enough to do quantum processing in a carefully controlled laboratory environment, never mind the warm, wet, complicated mess that is human biology, where maintaining coherence for sufficiently long periods of time is well nigh impossible.
Over the past decade, however, growing evidence suggests that certain biological systems might employ quantum mechanics. In photosynthesis, for example, quantum effects help plants turn sunlight into fuel. Scientists have also proposedthat migratory birds have a “quantum compass” enabling them to exploit Earth’s magnetic fields for navigation, or that the human sense of smell could be rooted in quantum mechanics.
Fisher’s notion of quantum processing in the brain broadly fits into this emerging field of quantum biology. Call it quantum neuroscience. He has developed a complicated hypothesis, incorporating nuclear and quantum physics, organic chemistry, neuroscience and biology. While his ideas have met with plenty of justifiable skepticism, some researchers are starting to pay attention. “Those who read his paper (as I hope many will) are bound to conclude: This old guy’s not so crazy,” wrote John Preskill, a physicist at the California Institute of Technology, after Fisher gave a talk there. “He may be on to something. At least he’s raising some very interesting questions.”
Senthil Todadri, a physicist at the Massachusetts Institute of Technology and Fisher’s longtime friend and colleague, is skeptical, but he thinks that Fisher has rephrased the central question—is quantum processing happening in the brain?—in such a way that it lays out a road map to test the hypothesis rigorously. “The general assumption has been that of course there is no quantum information processing that’s possible in the brain,” Todadri said. “He makes the case that there’s precisely one loophole. So the next step is to see if that loophole can be closed.” Indeed, Fisher has begun to bring together a team to do laboratory tests to answer this question once and for all.
Fisher belongs to something of a physics dynasty: His father, Michael E. Fisher, is a prominent physicist at the University of Maryland, College Park, whose work in statistical physics has garnered numerous honors and awards over the course of his career. His brother, Daniel Fisher, is an applied physicist at Stanford University who specializes in evolutionary dynamics. Matthew Fisher has followed in their footsteps, carving out a highly successful physics career. He shared the prestigious Oliver E. Buckley Prize in 2015 for his research on quantum phase transitions.
So what drove him to move away from mainstream physics and toward the controversial and notoriously messy interface of biology, chemistry, neuroscience and quantum physics? His own struggles with clinical depression.
Fisher vividly remembers that February 1986 day when he woke up feeling numb and jet-lagged, as if he hadn’t slept in a week. “I felt like I had been drugged,” he said. Extra sleep didn’t help. Adjusting his diet and exercise regime proved futile, and blood tests showed nothing amiss. But his condition persisted for two full years. “It felt like a migraine headache over my entire body every waking minute,” he said. It got so bad he contemplated suicide, although the birth of his first daughter gave him a reason to keep fighting through the fog of depression.
Eventually he found a psychiatrist who prescribed a tricyclic antidepressant, and within three weeks his mental state started to lift. “The metaphorical fog that had so enshrouded me that I couldn’t even see the sun—that cloud was a little less dense, and I saw there was a light behind it,” Fisher said. Within nine months he felt reborn, despite some significant side effects from the medication, including soaring blood pressure. He later switched to Prozac and has continuously monitored and tweaked his specific drug regimen ever since.
Fisher had found two substances, alike in all important respects save for quantum spin, and found that they could have very different effects on behavior. For Fisher, this was a tantalizing hint that quantum processes might indeed play a functional role in cognitive processing.
That said, going from an intriguing hypothesis to actually demonstrating that quantum processing plays a role in the brain is a daunting challenge. The brain would need some mechanism for storing quantum information in qubits for sufficiently long times. There must be a mechanism for entangling multiple qubits, and that entanglement must then have some chemically feasible means of influencing how neurons fire in some way. There must also be some means of transporting quantum information stored in the qubits throughout the brain.
The University of Oxford chemist Peter Hore, who investigates whether migratory birds’ navigational systems make use of quantum effects, concurs. “Here’s a theoretical physicist who is proposing specific molecules, specific mechanics, all the way through to how this could affect brain activity,” he said. “That opens up the possibility of experimental testing.”
Experimental testing is precisely what Fisher is now trying to do. He just spent a sabbatical at Stanford University working with researchers there to replicate the 1986 study with pregnant rats. He acknowledged the preliminary results were disappointing, in that the data didn’t provide much information, but thinks if it’s repeated with a protocol closer to the original 1986 experiment, the results might be more conclusive.
Fisher has applied for funding to conduct further in-depth quantum chemistry experiments. He has cobbled together a small group of scientists from various disciplines at UCSB and the University of California, San Francisco, as collaborators. First and foremost, he would like to investigate whether calcium phosphate really does form stable Posner molecules, and whether the phosphorus nuclear spins of these molecules can be entangled for sufficiently long periods of time.
Even Hore and Olaya-Castro are skeptical of the latter, particularly Fisher’s rough estimate that the coherence could last a day or more. “I think it’s very unlikely, to be honest,” Olaya-Castro said. “The longest time scale relevant for the biochemical activity that’s happening here is the scale of seconds, and that’s too long.” (Neurons can store information for microseconds.) Hore calls the prospect “remote,” pegging the limit at one second at best. “That doesn’t invalidate the whole idea, but I think he would need a different molecule to get long coherence times,” he said. “I don’t think the Posner molecule is it. But I’m looking forward to hearing how it goes.”
Others see no need to invoke quantum processing to explain brain function. “The evidence is building up that we can explain everything interesting about the mind in terms of interactions of neurons,” said Paul Thagard, a neurophilosopher at the University of Waterloo in Ontario, Canada, to New Scientist. (Thagard declined our request to comment further.)
Plenty of other aspects of Fisher’s hypothesis also require deeper examination, and he hopes to be able to conduct the experiments to do so. Is the Posner molecule’s structure symmetrical? And how isolated are the nuclear spins?
Most important, what if all those experiments ultimately prove his hypothesis wrong? It might be time to give up on the notion of quantum cognition altogether. “I believe that if phosphorus nuclear spin is not being used for quantum processing, then quantum mechanics is not operative in longtime scales in cognition,” Fisher said. “Ruling that out is important scientifically. It would be good for science to know.”